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INTRODUCTION

Blue crab Callinectes sapidus ranges along the
Atlantic coast of the American continent from Brazil
to Canada. Evidence does not support the existence of
distinct genetic populations, but functional sub-popu-
lations are recognized with only limited exchange
between them (McMillen-Jackson et al. 1994). Over
the species’ wide latitudinal range, individual sub-
populations can experience markedly different envi-
ronments. Temperature is likely the key environmen-
tal parameter causing the variation observed in life
history schedules (Smith 1997). Central to tempera-
ture’s role is the existence of a physiological minimum

temperature (Tmin) close to 10°C, below which molting,
and hence growth, ceases (Brylawski & Miller 2003).
As temperatures increase above Tmin the period
between molts shortens, and thus overall rates of
growth increase. In particular, the proportion of the
year during which temperatures are above Tmin is an
important determinant of the life history pattern
expressed. In the Gulf of Mexico, average bottom
water temperature is above Tmin throughout the year,
and crabs grow sufficiently fast so that they can
mature, reproduce, and enter the commercial fishery
in a single year. In contrast, water temperatures in
mid-latitudes are unfavorable between late November
and late April. During this period, crabs enter a dor-
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mant phase during which they bury into the sediments.
Thus in mid-latitude populations, growth and matura-
tion occur in different years so that individuals take a
minimum of 18 to 24 mo to complete their life cycle.

Because overwintering blue crabs in Chesapeake
Bay do not feed and are unlikely to experience signifi-
cant predation, bioenergetic costs are likely to play a
dominant role in determining overwintering survival.
Laboratory studies (Tagatz 1969, McKenzie 1970) have
shown that salinity and temperature interact with ther-
mal tolerances dependant on both salinity and accli-
mation temperature. These results suggest that salinity
and temperature, as well as factors such as depth,
which might serve to limit temperature fluctuations,
may be important in determining choice of overwinter-
ing habitat; however, no studies to date have examined
the extent to which winter distributions of blue crab
reflect differences in these variables.

The blue crab population in the Chesapeake Bay
supports the single largest blue crab fishery in North
America. Assessments of this stock indicate recent
declines in both abundance and landings (Miller &
Houde 1998, Rugolo et al. 1998, Lipcius & Stockhausen
2002) despite efforts to reduce fishing mortality. Winter
distributions in the Bay are an area of recent concern
for several reasons. Most directly, estimates of abun-
dance and rates of exploitation of blue crab in Chesa-
peake Bay, on which stock assessments have been
based, have been derived from a baywide, fishery-
independent winter dredge survey (WDS) conducted
between December and March (Sharov et al. 2003).
Also making the winter distribution of crabs important
is concern over the vulnerability of spawning females
in a winter dredge fishery (Miller 2003), the efficacy of
a dispersal corridor (Lipcius et al. 2001), and a com-
bined marine protected area and dispersal corridor
(Lipcius et al. 2003) that has recently been established
in the Virginia (southern) portion of Chesapeake Bay.
Thus, the ability to predict blue crab winter distribu-
tion has become desirable.

Generalized additive models (GAMs) provide a flex-
ible non-parametric or semi-parametric framework to
model the relationship between a response and one or
more predictor variables (Hastie & Tibshirani 1990).
GAMs do not require the distributional assumptions of
traditional parametric approaches and provide the
ability to fit flexible non-linear response curves to indi-
vidual predictor variables. In GAMs, the response vari-
able is assumed to be the sum of separate individual
functions of each of the predictor variables with a link
function appropriate to the distribution of the response
variable (e.g. a Poisson link function is often specified
for count data). In the more familiar generalized linear
models (GLMs), these individual functions of the pre-
dictor variables are linear. In GAMs, the individual

functions may be linear or may be non-parametric
smoothers such as regression splines, which are better-
suited to modeling many common biological response
curves such as threshold functions. Different functions
may be specified for each predictor variable, allowing
for response curves that are specific to the individual
predictors.

The use of GAMs to model organism/habitat rela-
tionships increased following publication of Hastie &
Tibshirani’s (1990) book and Swartzman et al.’s (1992)
application of this technique to model groundfish in
the Bering Sea. GAMs have since become widely used
in marine sciences to predict abundance and identify
important habitats (e.g. Swartzman et al. 1995, Mara-
velias et al. 2000a) and to model stock-recruitment
relationships (Cardinale & Arrhenius 2000).

Two-stage GAMs are an extension of the basic struc-
ture in which the response variable is modeled first as
a binomial variable (presence/absence or yes/no) and
secondly the non-zero observations (presence or yes)
are modeled as a continuous or count variable, usually
with a Gaussian or Poisson distribution respectively.
The 2 stages may then be combined multiplicatively to
yield an overall prediction (Barry & Welsh 2002). This
approach is particularly useful in modeling aquatic
organisms, for which, because of their patchy distribu-
tions, survey catches are often zero-inflated (Marave-
lias 1999). Two-stage GAMs have been used in fish-
eries to improve estimates of various stock assessment
indices (e.g. Borchers et al. 1997, Piet 2002) and to
model salmon feeding and growth (Rand 2002).

However, despite the widespread use of GAMs,
studies have yet to examine their ability to find general
relationships that are valid beyond the particular data
set or year modeled. A risk of using highly flexible,
data-driven methods is that the resulting predictive
models may fit the modeled data so specifically that
they may have little predictive power when applied to
other data sets. The underlying goal of most habitat
modeling studies is not simply to describe the trends in
the modeled data, but also to produce predictions valid
in other years/locations. Ideally, GAMs should produce
an understanding of the functional relationship be-
tween an organism and various components of its
environment. Cross-validation, by testing the ability of
models based on one data set to accurately predict
values in another, is a useful means of assessing the
generality of a model.

Here we fit 2-stage GAMs for each of 13 yr of data
from the WDS to determine the environmental vari-
ables that regulate winter distribution of mature
female blue crab in Chesapeake Bay. Subsequently,
we use cross-validation to assess the ability of models
developed from data collected in 1 yr to predict the
distribution and abundance of crabs in other years.
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MATERIALS AND METHODS

We modeled the distribution and abundance of
mature female blue crab in Chesapeake Bay. Mature
females were chosen as the focus of this study because
of their greater per capita contribution to future gener-
ations and because current management strategies,
including the lower Bay spawning sanctuary, are
focused specifically on their protection.

Data. The WDS has been conducted annually be-
tween December and March since the winter of 1989 to
1990. Full details of the survey design are provided in
Sharov et al. (2003), and are only summarized here.
Survey years will henceforth be referred to by the year
in which the survey was completed, e.g. the first sur-
vey is the 1990 survey. Stratification and sample size in
the first 3 yr of the survey were different than in the
remaining years, but except for this change the survey
has been conducted consistently throughout the period
of record. From 1993 to the present, 1255 to 1599 strat-
ified random stations were sampled within 3 region-
based strata. During the period from 1990 to 1992,
there were more strata and generally fewer (867 to
1395) samples. A typical distribution of station loca-
tions and densities of mature female blue crabs is
shown in Fig. 1. One minute tows of a 1.83 m wide
crab dredge were made at each station. The length of
each tow was determined by either Loran-C or a dif-
ferential global positioning system (DGPS). All crabs
greater than 15 mm carapace width were measured,
sexed, and enumerated. Additionally, environmental
parameters were measured at each station. Depletion
experiments (Zhang et al. 1993, Vølstad et al. 2000), in
which the same area was dredged repeatedly, were
conducted yearly since 1992 to determine the fraction
of blue crabs sampled by a single dredge tow, i.e. the
catchability coefficient (q). Based on these experi-
ments, Vølstad et al. (2000) applied an exponential
depletion model to estimate vessel and year specific
catchability coefficients that were used to transform
catch at each station into an estimate of absolute abun-
dance.

Environmental variables. Six environmental vari-
ables were chosen for consideration in the GAMs
based on availability and known or plausible roles in
influencing blue crab distributions. Depth was mea-
sured at each WDS site. The 5 remaining variables,
salinity, water temperature, distance from the Bay
mouth, distance from the nearest submerged aquatic
vegetation (SAV), and bottom slope, were derived
using data from other sources and a geographic infor-
mation system (GIS).

Although surface salinity and temperature were
measured at each WDS site, the more relevant mea-
surements for describing blue crab winter habitat

choice are the bottom salinity and temperature at the
time when they bury into the sediment. For this reason,
temperature and salinity used in this analysis were
interpolated from Chesapeake Bay Water Quality
Monitoring Program data (Chesapeake Bay Program
1993). December bottom temperature and salinity
maps were produced for each year using data collected
at 99 to 123 sites per year. The data were first spatially
detrended in order to satisfy the assumption of first-
order stationarity (Cressie 1993). Detrending was con-
ducted using linear regression with northing, easting,
and northing × easting interaction terms. Variogram
modeling and ordinary kriging were conducted on the
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residuals before adding the trend back to the kriged
predictions. Gaussian, spherical, and exponential vari-
ogram models were fit to empirical variograms using
non-linear least squares (SAS, NLIN procedure) and
the best fitting model (lowest mean squared error) was
used for kriging (SAS, KRIGE2D procedure). Interpo-
lated bottom temperature and salinity were mapped in
ArcView v8.3 and maps from the previous December
were used to assign values to each WDS site.

Distance from the Bay mouth was calculated along
the shortest through-water path between the dredge
start point and a point in the mouth of the Bay midway
between Cape Henry and Cape Charles. This distance
was calculated in ArcView v8.3 using a customized
script based on the lowest-cost path function and a
raster map of the Bay with a resolution of 250 m
(Jensen 2004). This variable was chosen based on a
preference by mature females for higher salinity water
in the lower Bay waters where their offspring may be
more easily transported offshore (Johnson 1995). Dis-
tance from SAV was chosen as a potentially important
environmental variable because of known affinities by
blue crabs for SAV (Orth et al. 1996) during the spring
and summer and the hypothesis that mature females
may choose the nearest suitable winter habitat. In
agreement with this hypothesis, SAV distributions from
the previous summer were used, e.g. 1989 SAV distrib-
utions were used to predict 1990 (i.e. winter 1989 to
1990) crab distributions. Distance from the nearest SAV
beds was calculated using maps of annual Chesapeake
Bay SAV distributions derived from aerial photography
(Orth et al. 2001). Distance from SAV was calculated as
the straight-line distance and was log transformed in
order to conform to a normal distribution.

Schaffner & Diaz (1988) found significant differences
in the abundance of blue crabs among different sedi-
ment types and bottom morphologies (shallow spits
and shoals, basins, and channels). Maps of Chesa-
peake Bay bottom type are not of sufficient spatial and
temporal resolution to allow us to incorporate bottom
type directly into our analyses. Accordingly, we used
bottom slope as a proxy for benthic habitat type. This
approach differentiates channel (high slope) from
basin (low slope) regions and may also reflect differ-
ences in sediment type assuming that finer sediments
are more likely to accumulate in low slope areas. Bot-
tom slope was calculated from a high-resolution (30 m)
bathymetric digital elevation layer (National Oceanic
and Atmospheric Administration 1998) in ArcView
v8.3. Bottom slope was log transformed and multiplied
by a factor of 10 in order to conform to a normal distri-
bution on a similar scale as the other environmental
variables.

Two-stage generalized additive models. Two-stage
GAMs were used to describe the relationship between

mature female blue crab density and the 6 environ-
mental variables. Models were developed indepen-
dently for each year of data using a randomly selected
training subset representing 75% of the data in an
individual year (650 to 1199 stations). The remaining
25% of the data were reserved for cross-validation. In
the first stage of the analysis, presence or absence of
mature female crabs was modeled using a logistic
model with a binomial error distribution and a logit
link function. In this stage, the estimated probability
of crab occurrence ( p̂) at any site was modeled as
an additive function of the 6 environmental variables:
D = water depth (m), M = distance to the Bay mouth
(km), V = distance (km) to SAV beds, S = salinity
(ppt), B = bottom slope, and T = water temperature
(°C), given by:

p̂ = s(D) + s(M) + s(V) + s(S) + s(B) + s(T) (1)

where the s’s are unique regression spline functions for
each environmental variable. Penalized regression
splines (Wood & Augustin 2002) were fitted using the
mgcv (v1.0-9) package for R v1.9.1.

In the second stage of the model, log transformed
mature female blue crab density (# 1000 m–2) of only
those stations at which at least one mature female crab
was caught was modeled as a function of environmen-
tal covariates with a Gaussian error distribution. The
model equation was:

ln(µ̂) = s(D) + s(M) + s(V) + s(S) + s(B) + s(T) (2)

where µ̂ is the predicted density of mature female blue
crabs given occurrence, and the other variables are as
given above. Subsequently, the predicted log abun-
dance, ln(ŷ), at a given location was calculated as the
product of Stage I and Stage II (Barry & Welsh 2002):

ln(ŷ) = p̂ × ln(µ̂) (3)

The flexibility of the response curves was optimized
using an iterative method that rewards model fit and
penalizes degrees of freedom (Wood 2000). This
approach avoids the subjectivity inherent in choosing
degrees of freedom a priori and ensures that the mod-
els provide the best fit with the fewest degrees of free-
dom. An initial full model containing all 6 variables
was simplified by removing insignificant variables
(backward elimination) until all remaining variables
were significant (α = 0.05). All possible 2-variable
interactions using the remaining variables were then
added to the model, and the model was again pared
down to only significant terms. Non-significant main
effect terms (i.e. a single response variable with no
interaction) were retained, however, if they were also
part of a significant interaction. In 2 instances, the
model-fitting algorithm would not converge when the
degrees of freedom for an interaction term were not
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fixed. In these cases, a range of plausible degrees of
freedom were given, and the model with the highest
adjusted R2 was selected.

Model fit, cross-validation, and mapping. Receiver
operating characteristic (ROC) curves were used to
assess the fit and generality of Stage I (presence/
absence) models. Although ROC curves are commonly
used to assess logistic regression models (Hosmer &
Lemeshow 2000) and have been used to assess habitat
models developed through logistic regression (e.g.
Bonn & Schroder 2001, Scholten et. al. 2003, Gibson et
al. 2004), they can also be applied to any model that
produces estimates of p (the probability of presence)
for a binomially distributed response variable. ROC
curves are simply a plot of sensitivity (the fraction of
correctly predicted presences) against 1– specificity
(the fraction of correctly predicted absences) with
changing critical values of p (pcrit, the probability
above which presence is predicted). An ROC curve for
a model with no discriminatory power is simply a
straight line with a slope of one, i.e. as pcrit changes,
any increase in sensitivity is offset by an equivalent
loss of specificity. ROC curves are used here to calcu-
late the area under the ROC curve (AUC, a measure of
discriminatory power), popt (the value of p which re-
sults in the highest percentage of correct predictions),
and pfair (the value of p for which sensitivity and speci-
ficity are equal). AUC is a threshold-independent (i.e.
it does not depend on a specified pcrit) summary statis-
tic that ranges from 0 (no discriminatory power) to 1
(perfect discriminatory power) and has been pre-
viously used to assess the generality of logistic regres-
sion-based habitat models (Bonn & Schroder 2001).
Although criteria for evaluating AUC values are to
some extent arbitrary, Hosmer & Lemeshow (2000)
suggest the following cut-offs: 0.7 to 0.8 acceptable, 0.8
to 0.9 excellent, >0.9 outstanding.

Cross-validation was also used to assess the transfer-
ability of the combined models (the product of Stage I
and Stage II) fitted to training data sets to a separate
test data set from the same year (i.e. intra-annual
cross-validation) or to data from
another year (i.e. inter-annual cross-
validation). The predictive ability of
each combined model was assessed by
regressing predicted values on the
observed values. The resulting least-
squares correlation coefficient was
used as an index of model perfor-
mance. We tested 2 hypotheses: (1)
Models fitted to a training data set per-
form better (i.e. higher r) on the train-
ing data than on independent test data
from the same year. (2) Models perform
better in intra-annual cross-validation

than when applied to data from other years (inter-
annual cross validation).

To test these hypotheses, the Fisher (1915) transfor-
mation was used to normalize the cross-validation cor-
relation coefficients (r). The first hypothesis was tested
using a paired t-test of the transformed correlation
coefficients and the second was tested using a t-test for
2 samples with equal variance. To aid interpretation of
the results of the cross-validation analyses we com-
pared all individual models to the grand mean (includ-
ing inter- and intra-annual) cross-validation r. We cal-
culated standardized normal deviates:

(4)

where ri,j is the Fisher (1915) transformed coefficient of
determination for predictions from the model year i,
applied to observed year j, –r is the grand mean, and s
the sample standard deviation of –r .

In order to visualize predicted mature female blue
crab distributions, predictions from the most general
model (i.e. the model with the highest mean cross-
validation r-squared value), were mapped for Stage I,
Stage II, and the combined model. Predictions were
made for 1 × 1 km grid cells based on the values of
the predictor variables for each cell. Values of the
dynamic predictor variables (temperature, salinity, and
distance from SAV) used in mapping were the values
within each grid cell for the summer (distance from
SAV) or December (temperature and salinity) preced-
ing the most general model.

RESULTS

Model development

Significant correlations were present between many
pairs of explanatory variables (Table 1). Most notably,
there was a strong and negative correlation (r = –0.64)
between salinity and distance from the Bay mouth.

z
r r

s
i j  ,=

−( )
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Distance Salinity Depth Temp. Slope SAV
(M) (S) (D) (T) (B) (V)

Distance (M) 1
Salinity (S) –0.637 1
Depth (D) –0.038 0.192 1
Temp. (T) –0.091 0.341 0.118 1
Slope (B) 0.107 –0.073 0.284 –0.002 1
SAV (V) –0.010 –0.133 0.139 0.079 –0.055 1

Table 1. Pearson correlation coefficients between all pairs of environmental
variables. Significant correlations (p < 0.05) are shown in bold. All other correla-

tions are insignificant (p > 0.05)



Mar Ecol Prog Ser 299: 239–255, 2005

Moderately strong correlations occurred between
salinity and temperature (r = 0.34), and between
depth and bottom slope (r = 0.28). Although the corre-
lations among the explanatory variables were often sta-
tistically significant, even the 2 most strongly correlated
variables (salinity and distance from the Bay mouth) do
not overlap entirely as salinity patterns are strongly in-
fluenced by freshwater flow from the western shore
tributaries, which, combined with the Coriolis effect,
results in a pattern of lower salinities in the western re-
gion of the Chesapeake Bay. Colinearity among the ex-
planatory variables was not deemed sufficient to drop
variables from the full models, but will be considered in
the interpretation of model selection results.

All 6 explanatory variables were included as either
significant main effects or in interaction terms in at
least 3 of the final models; however, no variable
occurred in all models (Table 2). Distance from the
Bay mouth and depth were the most commonly
included variables. In Stage I, distance from the Bay
mouth was significant in 9 out of 13 yr and depth was

significant in all years. Distance from Bay mouth
appeared in 10 out of 13 yr for Stage II models, while
depth was included in 5 Stage II models. Water tem-
perature also appeared commonly in Stage I, occurring
in 9 out of 13 yr, but was only found to be significant in
2 of the Stage II models. Salinity was included in 8 yr
for Stage I and in 2 yr for Stage II. Importantly, salinity
was often included in Stage I models when distance
from the Bay mouth was not. The remaining 2 vari-
ables, bottom slope and distance from SAV, were not
often found to be significant in either model stage.

Penalized regression spline fits of individual envi-
ronmental factors to blue crab density varied from sim-
ple linear functions to highly complex curves. We pre-
sent response curves for the most commonly included
variables, distance from the Bay mouth (Fig. 2), salin-
ity (Fig. 3), depth (Fig. 4), and temperature (Fig. 5),
for all years in which they were included as significant
main effect terms only, i.e. not in interaction. All other
response curves are available at: http://hjort.cbl.
umces.edu/crabs/GAM.html
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Year N df Distance Salinity Depth Temp. Slope SAV Interaction R2 adj Deviance 
(M) (S) (D) (T) (B) (V) I II explained

(a)
1990 650 25.4 ns <0.001 I I ns ns D/T 0.027 ns 0.274 31.5
1991 723 27.8 I ns I ns 0.048 ns M/D <0.001 ns 0.246 26.1
1992 1046 10.3 ns <0.001 <0.001 ns ns ns ns ns 0.221 2200
1993 941 22.7 ns I I <0.001 ns 0.044 S/D <0.001 ns 0.255 27.1
1994 1071 37.1 I I <0.001 ns ns 0.036 M/S 0.036 M/V 0.030 0.225 28.1
1995 1199 18.5 ns I <0.001 I ns ns S/T 0.005 ns 0.097 17.7
1996 1187 32.5 <0.001 I I <0.001 ns I S/V 0.001 S/D <0.001 0.255 27.6
1997 1193 16.1 I <0.001 I <0.001 ns ns M/D <0.001 ns 0.189 23.1
1998 1181 29.2 I ns I <0.001 ns ns M/D <0.001 ns 0.267 28.3
1999 1139 22.4 <0.001 ns I I ns ns D/T 0.014 ns 0.197 27.2
2000 1133 17.3 <0.001 ns <0.001 <0.001 ns ns ns ns 0.270 28.6
2001 1167 25.0 I ns I <0.001 ns ns M/D 0.002 ns 0.328 38.4
2002 1148 18.9 I 0.012 I ns ns 0.018 M/D 0.002 ns 0.215 29.8

(b)
1990 91 3.0 ns ns ns 0.004 ns 0.007 ns ns 0.136 16.5
1991 161 9.0 <0.001 ns 0.002 ns 0.002 0.047 ns ns 0.310 34.9
1992 197 2.0 <0.001 ns 0.003 ns ns ns ns ns 0.116 12.5
1993 166 2.2 <0.001 ns ns ns ns ns ns ns 0.145 15.6
1994 150 6.3 <0.001 ns ns ns ns ns ns ns 0.265 29.6
1995 88 11.0 0.002 ns ns ns 0.047 ns ns ns 0.219 31.8
1996 204 10.8 <0.001 ns <0.001 ns ns ns ns ns 0.359 39.3
1997 149 12.0 I ns I ns ns 0.037 M/D 0.002 ns 0.457 50.1
1998 185 7.8 0.022 <0.001 0.007 ns ns ns ns ns 0.393 41.9
1999 102 4.9 <0.001 ns ns 0.002 ns ns ns ns 0.318 35.1
2000 193 2.6 ns <0.001 ns ns ns ns ns ns 0.182 19.3
2001 116 1.0 <0.001 ns ns ns ns ns ns ns 0.136 14.4
2002 100 2.3 ns ns ns ns ns 0.024 ns ns 0.077 09.8

Table 2. Callinectes sapidus. Model selection results for (a) Stage I (presence/absence) and (b) Stage II (abundance) GAMs. Sig-
nificance test p-values are given for the explanatory variables distance from Bay mouth, salinity, depth, temperature, bottom
slope, distance from SAV, and interaction terms. Terms that were not significant (ns, p > 0.05) were dropped from the model
unless they were involved in a significant interaction (I). Degrees of freedom (df) were fixed for terms in bold. The adjusted 

R2 and percent of deviance explained are also given for each model
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Relationships between crab distribution and abun-
dance and distance from the Bay mouth showed 2 dom-
inant patterns. A linear decline in crab density with in-
creasing distance from the Bay mouth was seen in 4 of
the 7 Stage II models examined (Fig. 2d,e,j,l). The
second pattern, a maximum at approximately 25 to
50 km, was observed in 2 Stage I (Fig. 2b,c) and 2
Stage II models (Fig. 2g,h). The shape of these re-

sponse curves at greater distances from the Bay mouth
was highly variable, reflecting the relatively rare catch
of mature female blue crabs in the upper Bay, and some
curves (Fig. 2c,f,g,k) suggest that the decline in crab
density may level off beyond 100 km from the Bay
mouth.

Response curves for salinities below 15 to 20 ppt
were characterized by lower probabilities of pres-
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Fig. 2. Callinectes sapidus. Conditional regression spline smooths of distance from Bay mouth (km) on the probability of mature
female blue crab presence for (a) 1996, (b) 1999, and (c) 2000 and density (ind. 1000 m–2) given presence for (d–i) 1991 to 1996, (j)
1998, (k) 1999, and (l) 2001. Smooths are shown only for those years in which the variables were significant (p < 0.05) and not
included in an interaction term. The y-axis is the normalized effect of the variable; rugplot on the x-axis represents the number

of observations; dashed lines are the ±2 SE confidence belts
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Fig. 4. Callinectes sapidus. Conditional regression
spline smooths of depth (m) on the probability of ma-
ture female blue crab presence for (a) 1992, (b) 1994,
(c) 1995, and (d) 2000 and density (ind. 1000 m–2)
given presence for (e) 1991, (f) 1992, (g) 1996, and (h)
1998. Smooths are shown only for those years in
which the variables were significant (p < 0.05) and
not included in an interaction term. The y-axis is the
normalized effect of the variable; rugplot on the x-
axis represents the number of observations; dashed
lines are the ±2 standard error confidence belts
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ence and lower abundance given presence as well as
extreme variability due to the smaller number of
samples at low salinity. Some curves (Fig. 3a,e,f)
showed a maximum or a leveling off at approxi-
mately 25 ppt.

The relationship between crab abundance and
depth showed a general increase in both probability of
crab presence and in density given presence as depth
increases. Within this generally positive trend, a maxi-
mum (Fig. 4, panels a and e) or a leveling off of the
curve (Fig. 4, panels c, d, and h) was frequently
observed at approximately 15 to 20 m.

Differences were apparent between the Stage I and
Stage II response curves for temperature. Stage I
curves (Fig. 5, panels a–f) showed a generally nega-
tive relationship between temperature and the proba-
bility of crab presence while Stage II curves (Fig. 5,
panels g and h) both indicate a positive relationship
between temperature and crab density given pres-
ence. Substantial interannual differences in Decem-
ber bottom temperatures, however, make it difficult to
compare models for which temperature ranges do not
overlap.

Model fit, cross-validation, and mapping

We used the models developed on the training data
in a single year to predict crab distribution and abun-
dance for the test data for that year, and for the entire
data sets for alternative years. Stage I (presence/
absence) models were evaluated using ROC curves to
assess model fit (Table 3a) and generality (Table 3b).
The percent of correct predictions for models applied
to the training data varied from 82 to 93% at popt and
from 74 to 85% at pfair. The AUC for the training data
varied from 0.81 to 0.91. These levels are equivalent to
Hosmer & Lemeshow’s (2000) excellent rating. AUC
values were generally lower for the cross-validation
where models developed with data from 1 yr were
applied to data from another year; however, all models
displayed acceptable discriminatory power (AUC >
0.7) for at least 4 other years. The Stage I models from
1997 and 1998 were the most general with AUC > 0.7
for all years other than 1995. The 1995 data were well
predicted only by Stage I models from 1994 and 1995.

Abundance was highly variable and more difficult
to predict than distribution. Two-stage GAMs devel-
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Fig. 5. Callinectes sapidus. Conditional regression
spline smooths of temperature (°C) on the probabil-
ity of mature female blue crab presence for (a)
1993, (b–d) 1996 to 1998, (e) 2000, and (f) 2001 and
density (ind. 1000 m–2) given presence for (g) 1990
and (h) 1999. Smooths are shown only for those
years in which the variables were significant (p <
0.05) and not included in an interaction term. The
y-axis is the normalized effect of the variable; rug-
plot on the x-axis represents the number of ob-
servations; dashed lines are the ±2 standard error

confidence belts



oped using the 6 habitat variables included in this
study explained between 13 and 36% (mean R2 =
0.277) of the variability in blue crab winter densities
in the training data set (Table 4a). WDS samples
were characterized by a large percentage (80 to 90%)
of observations containing no mature female blue
crabs, as well as a small number of very high-density
samples. The 2-stage models showed no evidence of
bias and generally predicted realistic densities but
underestimated the observed variability. For exam-
ple, predicted log densities from the 1998 2-stage
model showed a similar mean as the survey obser-
vations, with the linear regression of observed vs.
predicted falling nearly coincident with the one-to-
one line, but showed lower variability, i.e. fewer low-
or zero-density predictions and a lower range of pre-
dicted values (Fig. 6). Because of the relatively short
tows (1 min), observed densities show a notable gap
between tows with zero catches, and the lowest
observed densities.

The mean R2 for the intra-annual comparison was
0.192. Results for the intra-annual cross-validation
showed that there was a significant difference in
model performance between test data and training
data (paired t-test, p = 0.002). The inter-annual cross-
validation displayed substantial variation among years
and was significantly less accurate than the intra-
annual cross-validation (t-test, p < 0.001).

The cross-validation table (Table 4b) represents the
ability of a model developed with data from 1 yr
(columns) to predict data from other years (rows), and
it displays 2 different but related pieces of information.
Examining the patterns within a column evaluates the
characteristics of one model. Patterns within a row
relate to the characteristics of a particular data set.

The column patterns show that apart from 1990 and
2001 all models yielded above average r values for at
least 4 other years of data. This suggests that the mod-
els, though they differ in their individual parameters,
do capture some general features of the blue crab

(a) popt pfair

Year AUC Value Sens. Spec. % Corr. Value Sens. Spec. % Corr.

1990 0.870 0.470 0.396 0.975 89.4 0.155 0.780 0.785 78.5
1991 0.839 0.453 0.460 0.927 82.3 0.235 0.752 0.749 75.0
1992 0.809 0.575 0.284 0.973 84.3 0.180 0.746 0.740 74.1
1993 0.845 0.580 0.277 0.983 85.9 0.180 0.765 0.767 76.6
1994 0.862 0.405 0.393 0.951 87.3 0.175 0.793 0.793 79.3
1995 0.824 0.325 0.046 0.997 92.7 0.085 0.773 0.762 76.3
1996 0.851 0.470 0.373 0.966 86.4 0.195 0.770 0.770 77.3
1997 0.837 0.410 0.302 0.974 89.0 0.125 0.752 0.748 74.9
1998 0.849 0.455 0.400 0.960 87.2 0.150 0.768 0.770 77.0
1999 0.869 0.380 0.294 0.981 91.9 0.110 0.784 0.786 78.6
2000 0.859 0.533 0.290 0.972 85.6 0.200 0.777 0.783 78.2
2001 0.905 0.540 0.302 0.983 91.5 0.110 0.845 0.847 84.7
2002 0.884 0.400 0.310 0.979 92.1 0.105 0.810 0.819 81.8

(b)
Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

1990 0.74 0.69 0.65 0.74 0.73 0.76 0.64 0.73 0.72 0.44 0.57 0.68 0.71
1991 0.71 0.78 0.65 0.79 0.75 0.74 0.78 0.75 0.81 0.65 0.69 0.63 0.70
1992 0.58 0.76 0.77 0.72 0.78 0.74 0.74 0.71 0.79 0.79 0.79 0.72 0.78
1993 0.73 0.78 0.73 0.79 0.74 0.74 0.72 0.72 0.76 0.60 0.67 0.54 0.73
1994 0.58 0.80 0.78 0.77 0.82 0.81 0.82 0.76 0.79 0.78 0.78 0.73 0.75
1995 0.63 0.64 0.62 0.67 0.72 0.70 0.65 0.63 0.66 0.64 0.67 0.50 0.65
1996 0.66 0.69 0.64 0.65 0.67 0.62 0.72 0.70 0.71 0.57 0.62 0.69 0.69
1997 0.67 0.72 0.64 0.70 0.66 0.66 0.68 0.76 0.73 0.59 0.65 0.65 0.67
1998 0.64 0.73 0.69 0.72 0.67 0.71 0.70 0.76 0.77 0.56 0.60 0.57 0.64
1999 0.64 0.80 0.81 0.77 0.82 0.81 0.82 0.81 0.85 0.85 0.86 0.68 0.86
2000 0.73 0.77 0.79 0.74 0.80 0.76 0.74 0.77 0.79 0.83 0.84 0.71 0.79
2001 0.74 0.75 0.72 0.71 0.74 0.57 0.76 0.71 0.77 0.63 0.78 0.80 0.80
2002 0.52 0.71 0.73 0.59 0.70 0.62 0.65 0.74 0.75 0.70 0.76 0.52 0.75

Table 3. Callinectes sapidus. Evaluation of Stage I (presence/absence) model fits to the training data (a) using receiver operating
characteristic (ROC) curves and cross-validation of Stage I models (b). Values in (a) respresent the area unter the ROC curve
(AUC), the critical p-values: poptimum (popt) and pfair, and their sensitivity (sens.), specificity (Spec.), and percent correct predictions
(% Corr.). Values in (b) represent the AUC where models developed with data from one year (columns) are applied to data from
another (rows). Values on the diagonal represent intra-annual cross-validation where models developed using a training data 

subset are applied to the test data subset for the same year. AUC values >0.7 are shaded

Mar Ecol Prog Ser 299: 239–255, 2005248



habitat preference. The 1998 model displayed above
average cross-validation r values for all years except
1990, 1995, and 2002. The other striking feature of the
column patterns is that the 1990 and 2001 models
yielded below average r values for nearly all data sets
except test data from the same year.

The row patterns offer further information about 
inter-annual differences. The year 1990 is well predicted
(i.e. above average r) only by the model from the same
year. The data for 1995 are simply difficult to predict
with any model. The 1994 data are well predicted by
models from any year other than 1990, 1997, or 2001.

Predictions from the Stage I (Fig. 7a), Stage II
(Fig. 7b), and combined (Fig. 7c) models were mapped
for the 1998 model since this year exhibited the great-
est generality for both Stage I and the combined
model. Critical p-values used for classifying the Stage I
map were pfair = 0.15 and popt = 0.455. Of the sam-
ples in the 1998 training data that contained one or
more mature female blue crabs, 77% occurred within

the shaded areas of Fig. 7a, and 40% occurred within
the dark shaded area. Much of the mainstem Bay south
of the Rappahannock River is shaded, indicating
higher probability of blue crab presence. North of the
Rappahannock River, shaded areas are generally
restricted to the deeper mainstem channels and the
channel in Tangier Sound.

Patterns of predicted density given presence (con-
ditional density) shown in Fig. 7b are broadly similar
to patterns in probability of occurrence. Higher con-
ditional densities are predicted in the lower Bay
mainstem and in deeper channels throughout the
Bay. The higher conditional densities predicted in the
upper reaches of western shore tributaries and the
northernmost region of the mainstem are not found in
the Stage I model and are apparently extrapolations
of the salinity effect beyond the range of sampled
salinities.

The combined model (Fig. 7c) is derived from raster
multiplication of Figs. 7a & b and reflects the influence

(a)
Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Training 0.299 0.315 0.255 0.296 0.270 0.130 0.314 0.241 0.346 0.232 0.305 0.360 0.239
1990 0.099 0.064 0.016 0.069 0.059 0.091 0.014 0.060 0.081 0.001 0.015 0.069 0.013
1991 0.028 0.219 0.048 0.135 0.174 0.071 0.128 0.071 0.195 0.043 0.148 0.009 0.086
1992 0.003 0.257 0.291 0.191 0.265 0.210 0.146 0.099 0.271 0.235 0.273 0.069 0.221
1993 0.129 0.188 0.128 0.238 0.113 0.089 0.113 0.090 0.165 0.022 0.047 0.031 0.125
1994 0.000 0.194 0.200 0.232 0.244 0.237 0.117 0.056 0.194 0.176 0.222 0.041 0.124
1995 0.010 0.032 0.040 0.063 0.095 0.086 0.016 0.008 0.040 0.023 0.048 0.010 0.014
1996 0.043 0.111 0.088 0.077 0.098 0.042 0.168 0.110 0.152 0.017 0.005 0.062 0.081
1997 0.087 0.165 0.095 0.171 0.097 0.055 0.129 0.197 0.172 0.024 0.097 0.054 0.110
1998 0.035 0.105 0.085 0.109 0.079 0.066 0.084 0.099 0.129 0.008 0.049 0.005 0.044
1999 0.000 0.155 0.236 0.157 0.139 0.174 0.108 0.088 0.176 0.196 0.205 0.080 0.184
2000 0.042 0.206 0.222 0.202 0.183 0.191 0.092 0.077 0.243 0.255 0.311 0.069 0.165
2001 0.078 0.184 0.108 0.080 0.121 0.009 0.129 0.078 0.166 0.036 0.054 0.228 0.087
2002 0.001 0.083 0.075 0.016 0.084 0.021 0.019 0.056 0.084 0.062 0.128 0.061 0.089

(b)
Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

1990 0.04 –0.43 –1.38 –0.36 –0.52 –0.06 –1.44 –0.50 –0.20 –2.10 –1.41 –0.37 –1.46
1991 –1.08 1.35 –0.69 0.48 0.89 –0.33 0.39 –0.33 1.11 –0.79 0.62 –1.61 –0.12
1992 –1.91 1.72 2.04 1.07 1.79 1.26 0.60 0.05 1.85 1.51 1.87 –0.37 1.37
1993 0.40 1.04 0.39 1.53 0.21 –0.08 0.22 –0.07 0.80 –1.22 –0.71 –1.03 0.36
1994 –2.16 1.10 1.16 1.47 1.59 1.53 0.26 –0.57 1.10 0.92 1.38 –0.82 0.35
1995 –1.58 –0.99 –0.84 –0.45 –0.01 –0.13 –1.37 –1.66 –0.84 –1.20 –0.70 –1.58 –1.43
1996 –0.78 0.20 –0.09 –0.25 0.03 –0.80 0.83 0.18 0.67 –1.36 –1.78 –0.47 –0.19
1997 –0.11 0.80 0.00 0.86 0.02 –0.58 0.41 1.13 0.87 –1.18 0.02 –0.59 0.18
1998 –0.93 0.12 –0.13 0.17 –0.22 –0.41 –0.15 0.04 0.40 –1.66 –0.68 –1.80 –0.77
1999 –2.28 0.69 1.52 0.71 0.52 0.89 0.15 –0.10 0.92 1.12 1.21 –0.21 1.00
2000 –0.80 1.22 1.38 1.18 0.99 1.07 –0.04 –0.25 1.59 1.70 2.22 –0.36 0.80
2001 –0.24 0.99 0.15 –0.21 0.32 –1.61 0.40 –0.23 0.81 –0.91 –0.60 1.43 –0.11
2002 –2.07 –0.17 –0.28 –1.39 –0.16 –1.25 –1.31 –0.56 –0.15 –0.46 0.39 –0.48 –0.08

Table 4. Callinectes sapidus. Cross-validation where models developed with data from one year (columns) are applied to data
from another (rows). Values in (a) respresent the cross-validation r-squared. Values on the diagonal (in bold) represent intra-
annual cross-validation where models developed using a training data subset are applied to the test data subset for the same
year. The first row of (a) represents the model fit to the training data. Values in (b) represent the z-score, i.e. the number of
standard deviations above (shaded) or below the grand mean Fisher (1915) transformed cross-validation correlation coefficient
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of both model stages. Highest predicted
densities are found in the lower Bay
mainstem and deep channels. The high
conditional densities predicted in Stage II
for the upper reaches of western shore
tributaries and the northernmost region of
the mainstem are largely nullified by the
low probability of crab presence pre-
dicted for these areas in Stage I.

DISCUSSION

The spatial patterns of winter distribu-
tion and abundance of mature female blue
crabs in Chesapeake Bay were signifi-
cantly related to several environmental
factors over 13 yr. Depth and distance
from the Bay mouth (and their interaction)
were the dominant variables for predict-
ing both presence/absence and abun-
dance of mature female blue crab. In-
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Fig. 7. Callinectes sapidus. (a) Predicted probability of mature female blue crab presence, (b) predicted log density (log #
1000m–2) given presence, and (c) predicted log density (log # 1000m–2) based on the product of (a) and (b) from the 1998 model
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creased depth was associated with increased probabil-
ity of finding crabs and increased crab abundance
where they were present. Although greater depths are
generally associated with lower Bay waters, depth may
also have a direct effect on habitat suitability by provid-
ing some protection against rapid temperature
changes due to changing air temperature. Bottom wa-
ters in shallow parts of Chesapeake Bay typically show
greater daily temperature variations than do deep bot-
tom waters (O. Jensen, unpublished analysis of Chesa-
peake Bay Water Quality Monitoring Program data).

Probability of crab presence and crab abundance
generally decreased with distance from Bay mouth,
although in some years a maximum was discernible at
25 to 50 km from the Bay mouth. The correlation
between distance from the Bay mouth and other envi-
ronmental variables, salinity in particular, makes it dif-
ficult to determine what, if any, direct influence dis-
tance from the Bay mouth could have on blue crabs.
However, mature female blue crabs both spawn and
overwinter in the lower Bay, and it is likely that effec-
tive offshore transport of newly hatched crab larvae is
dependent on their release location. The role of dis-
tance from the Bay mouth in explaining abundance of
mature female blue crab may be related to selection for
optimum larval transport conditions or a balance
between conditions favoring higher survival and those
favoring reproductive success.

Salinity and temperature were also frequently found
to be significant factors in determining crab distribu-
tions, although perhaps not as often as might be
expected given the demonstrated effects of salinity
and temperature on the bioenergetics (Guerin &
Stickle 1992, Brylawski & Miller 2003), growth (Tagatz
1968, Smith 1997), and survival (Tagatz 1969) of blue
crabs in the laboratory. Higher salinities were associ-
ated with higher probability of blue crab presence and
higher density given presence, with a maximum at
25 ppt observed in some years. Females migrating
from the upper Chesapeake Bay likely do not spawn
until the season after mating (Turner et al. 2003); how-
ever, there are potential advantages to overwintering
in the lower Bay. Although adult females tolerate a
wide range of salinities, they may be less efficient
osmoregulators at lower salinity (Tan and Van Engel
1966), and may be less tolerant of extreme tempera-
tures at low salinity (Tagatz 1969). Laboratory studies
have demonstrated that blue crab respiration increases
at decreasing salinity (Engel & Eggert 1974, Guerin &
Stickle 1992), thus overwintering in high salinity
waters may allow females to conserve energy. In addi-
tion to having lower salinity, upper Bay waters also
have greater temperature fluctuations.

Higher temperatures were associated with a lower
probability of crab presence, but higher density given

presence. Blue crabs may be expected to have conflict-
ing demands regarding temperature. Mortality rates
increase sharply below 5°C (L. Bauer pers. obs.), but
respiration and metabolic costs begin to increase
rapidly above approximately 15°C (Brylawski & Miller
2003). Still, it is unclear why the direction of the tem-
perature response should vary between Stage I and
Stage II models.

Response curves for the 2 remaining variables (not
shown) are complex and do not coincide with simple
biological explanations. Bottom slope and distance from
SAV showed little ability to explain crab distributions
or abundance. Even when these variables were deter-
mined to be significant, the response curves were highly
variable and no support was provided for the hypothesis
that lower slope and shorter distance from SAV re-
present preferred winter habitat. Such year-to-year
variability in response curves may indicate that rela-
tionships to some habitat parameters are complex and
dynamic or may change with changes in population size.
It is also likely that some spurious relationships may be
found to be significant when fitting 26 separate models.

Although correlation among environmental parame-
ters is likely the norm rather than the exception, such
dependencies must be considered when evaluating
model selection results. For example, a strong correla-
tion exists between salinity and distance from the Bay
mouth. As a result, although both variables were com-
mon in the final models, it was relatively unusual for
both to be included in the same model. Although
efforts were made to make all variables equally likely
to enter into the model (e.g. by transforming non-nor-
mally distributed variables and rescaling some vari-
ables so that all were of the same magnitude), inherent
differences in variability and measurement error are
still likely to influence model selection. As Håkanson &
Peters (1995) have pointed out, if 2 environmental
parameters are equally related to a response, it is the
parameter with lower variability and lower measure-
ment error that is most likely to be selected by the
model. In this case, the static variables (depth and dis-
tance from the Bay mouth) have an advantage in that
they can be measured with little error and they do not
change over time. Even if individual crabs are select-
ing an overwintering location based on temperature
and salinity at the time of burying, depth and distance
from the Bay mouth may be more powerful predictors
of distributions, despite not being the proximate cue, to
the extent that they integrate information about salin-
ity and temperature over the period during which
crabs are selecting an overwinter location. Such ques-
tions about migration cues cannot be resolved through
an empirical habitat modeling approach.

Despite the highly flexible modeling process and the
inclusion of interactions among parameters, the full 2-
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stage GAMs explained only a fraction (13 to 36% when
applied to the training data) of the variability in crab
abundance. In addition, the 2 most important vari-
ables, depth and distance from the Bay mouth, are spa-
tially static and thus cannot explain inter-annual
changes in distribution patterns. Either there exist
other important environmental determinants of crab
distributions than those explored here or, although
habitat affinities clearly exist (as evidenced by the con-
sistent significance of some of the environmental para-
meters), much of the observed variability in distribu-
tion patterns is not the result of habitat selection. If
other environmental factors are guiding habitat selec-
tion, it is unclear what those factors may be. Although
hypoxia is prevalent in deeper Bay waters in the sum-
mer, winter dissolved oxygen levels are sufficient for
blue crabs in even the deepest Bay waters (Wang et al.
2001). The development of detailed benthic habitat
maps would allow for inclusion of sediment type as a
predictor variable; however, the evidence for sediment
type effects on blue crab distributions is mixed.
Schaffner & Diaz (1988) found significantly higher
abundance of blue crabs on sediments with intermedi-
ate sand content (41–60%) based on a limited number
(94) of lower Bay sample sites. In contrast, Sharov et al.
(2003) reported that stratification by sediment type
produced only marginal gains in precision of baywide
blue crab abundance estimates based on a sample size
of more than 1200 stations distributed throughout the
Bay. We conclude that factors other than habitat, such
as the timing of the onset of cold weather and density-
dependent habitat selection (discussed below), may
also be important in determining blue crab winter dis-
tributions.

Although blue crab density was difficult to predict,
the broader question of determining whether a given
habitat is likely to contain blue crabs or not proved
more tractable. Stage I (presence/absence) models
showed considerable ability to discriminate between
suitable and unsuitable habitat with approximately 75
to 80% correct predictions at pfair. The discriminatory
power of the Stage I models was also maintained when
applied to other years with an average AUC of 0.71.
Indeed, the most general Stage I model, the 1998
model, yielded an AUC greater than 0.7 for all but one
of the other years indicating that it provides broadly
applicable predictions which could be useful for man-
agement purposes. Furthermore, the probability map
for the 1998 Stage I model confirms observations that
mature female blue crab catch per unit effort (CPUE) is
higher in deep water (Lipcius et al. 2001) and in the
lower Bay, but also predicts relatively high probabili-
ties of occurrence in some of the deeper channels of
the middle and upper Bay and Tangier Sound. Mature
females are found in WDS samples at these middle and

upper Bay locations, but it is unclear whether these
individuals represent crabs that failed to complete
their migration to the lower Bay, as suggested by
Turner et al. (2003), or if these deep middle and upper
Bay channels also represent preferred overwintering
habitat. One of the component variables of the 1998
Stage I model is the dynamic variable, temperature. To
the extent that temperature patterns vary from year to
year, the predictions of the model are also likely to
shift, giving the model the ability to adapt its predic-
tions to changing environmental conditions.

The use of a GIS in combination with habitat suit-
ability models has become widespread as a method of
visualizing and mapping the results of habitat model-
ing (Stoner et al. 2001), as a qualitative test of habitat
model output (Zheng et al. 2002), and as a tool for mea-
suring variables that were not or could not be mea-
sured in the field (Brown et al. 2000, Clark et al. 2003).
Variables such as slope, bathymetric variance, and dis-
tance from a particular point or habitat type may pro-
vide important information about habitat suitability,
but cannot be easily measured in the field. In this
study, 3 of the GIS-derived variables (through-water
distance from the Bay mouth, salinity, and tempera-
ture) were found to be important factors for predicting
distributions while the other 2 (bottom slope and dis-
tance from SAV) were not. The ease with which such
GIS-derived variables can be calculated and tested for
predictive ability makes this an appealing method for
exploring potential habitat suitability factors.

Maps derived from such GIS-based habitat models
may be useful for siting marine protected areas and
dispersal corridors, which, for blue crab in Chesapeake
Bay, are currently based simply on observations of
higher concentrations of adult females at greater
depths (Lipcius et al. 2001) as well as non-biological
concerns such as enforceability. The concentration of
suitable overwintering habitat in Virginia (southern)
waters, which are subject to a winter dredge fishery,
raises concerns over the vulnerability of overwintering
mature female blue crabs. The region of highest prob-
ability of blue crab presence (Fig. 7a) is concentrated
in a relatively small region of the lower Bay. Habitat
with a probability of blue crab presence > 0.47 occu-
pies an area of approximately 500 km2. This suggests
that even a modestly-sized closed area could protect a
large proportion of the blue crab’s preferred overwin-
tering habitat.

The cross-validation confirmed the ability of GAMs
to describe general patterns, but provides a warning
against naïve application of models to predict distribu-
tions in other years. Although the mean inter-annual
cross-validation R2 value (0.101) was significantly
lower than that for the intra-annual comparison
(0.192), most models provided above average fits to
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several other data sets, and the best model provided
above average predictions for 10 out of 13 other years.
The failures of model generality were confined primar-
ily to 2 or 3 years. The data for 1990 are a good exam-
ple. Despite the fact that the 1990 model showed a
slightly above average fit to the training data (R2 =
0.299), the 1990 data were poorly predicted in inter-
annual cross-validation with R2 values below average
for all comparisons. The intra-annual cross-validation
R2, however, was approximately average. Similarly,
the 2001 model showed the best fit of any model to the
training data (R2 = 0.360) and well above average
intra-annual cross-validation, yet displayed poor gen-
erality with below average inter-annual cross-valida-
tion R2 values for all comparisons. This indicates that
although the strength of the response to habitat vari-
ables in 1990 and 2001 was normal, the details of that
response were different to those observed in most
other years. The explanation appears to lie in the
unusually early and severe winters of 1989-1990 and
2000-2001, which had the 2 lowest average December
temperatures observed over the 13 years of the sur-
vey. Thus, hypotheses or management actions devel-
oped from habitat models based on 1990 or 2001 data
would likely not be applicable to other years. However,
there was no reason a priori to anticipate this lack of
generality from the model fits or intra-annual cross-
validations. Accordingly, we caution against the appli-
cation of habitat models based on a single year of data
without adequate inter-annual cross-validation.

Although models were generally transferable, some
years consistently defied prediction by models devel-
oped from other years’ data. The data from 1995, for
example, were poorly predicted by all models and had
the poorest observed fit to the training data. The rela-
tionships between blue crabs and their habitat in 1995
appear to be weak or highly variable as all models fit
poorly to data from this year. Despite this high vari-
ability in 1995, the mean response to environmental
variables in this year appears to have been fairly typi-
cal as the 1995 model displayed above average predic-
tion accuracy when applied to 4 other years of data.

Some of the inter-annual variation in the models and
their cross-validation performance is likely related to
the date of onset of cold weather and the severity of the
winter. Blue crabs are restricted in their level of activ-
ity by ambient temperatures. Early onset of cold
weather is thought to result in an arrested migration
that may strand individual blue crabs in sub-optimal
habitat. Consequently, the earlier the onset of cold
weather, the less likely observed distributions reflect
true habitat preference. Prolonged periods of cold
weather also appear to increase the amount of winter
mortality (Sharov et al. 2003). To the extent that crabs
concentrate in areas where overwinter survival is

higher, severe winters may highlight the expression of
existing habitat affinities by preferentially removing
individuals that stray from optimal habitat. Conversely,
severe winters are likely to obscure the consequences
of habitat choice based on factors other than survival,
for example, spawning success.

Density-dependent changes in habitat use offer an
intriguing alternative explanation for inter-annual dif-
ferences. MacCall’s (1990) basin model predicts that at
low population density all individuals will concentrate
in the preferred habitats. As population density
increases, the preferred habitats become full and indi-
viduals are forced to seek out alternative sub-optimal
sites. Over the 13 years of the winter dredge survey,
estimates of baywide mature female abundance show
a more than 4-fold variation from a high of 182 million
in 1991 to a low of 41 million in 2001. Interannual
changes in abundance are significantly correlated with
changes in the location of the center of mass of blue
crab distributions (Jensen 2004). Even in years with
high blue crab abundance the vast majority of samples
showed densities below one crab m–2, suggesting that
space is not physically limiting. The potential mecha-
nisms behind this apparent density-dependent habitat
selection deserve further study

Despite inter-annual variation and the existence of
non-habitat related influences, a GAM approach offers
unique insights into the factors determining winter dis-
tributions of mature female blue crabs. Environmental
factors were considered not in isolation, but simultane-
ously and in interaction. The value of the GAM
approach is that, from this collection of intercorrelated
variables, it was possible to discern general patterns
that persisted from year to year and to identify depth
and the distance from the Bay mouth as the 2 most
important environmental determinants of winter habi-
tat. The details of these relationships and formal
hypothesis tests for individual factors are more appro-
priately the domain of other methods.

GAMs have become widely recognized as an impor-
tant tool for understanding species distributions
(reviewed in Guisan et al. 2002) because they effec-
tively address many of the statistical challenges (e.g.
non-linear responses, complex interactions, and counts
that are zero-inflated or otherwise problematic in their
distribution) associated with field survey data. One of
the concerns with using such a flexible approach is
that better model fit might come at the expense of gen-
erality. Although some applications of GAMs have suc-
cessfully addressed concerns regarding generality by
dividing large data sets into different years and ana-
lyzing them separately (e.g. Begg & Marteinsdottir
2002) or including a year term (e.g. Maravelias et al.
2000b) in the model, and one has used inter-annual
cross-validation to compare 2 separate model years
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(Forney 2000), this is the first systematic test of GAM
habitat model generality. Interannual differences in
the structure of models that, we developed, together
with their performance in cross-validation trials under-
score the importance of having more than a single year
‘snapshot.’ Although most models performed well in
cross-validation, a few years were different enough
from the general pattern that they resulted in models
with little ability to predict distributions in other years.
Such aberrant years can provide unique insights (in
this case, suggesting the importance of the timing of
cold weather) and, with multiple years of data, they
can be identified and effectively dealt with. In the
absence of sufficient temporal scope to the data, how-
ever, habitat suitability models may be misleading.
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